
Parallelization of the QC-lib Quantum
Computer Simulator Library

Ian Glendinning and Bernhard Ömer

VCPC
European Centre for Parallel Computing at Vienna

Liechtensteinstraße 22, A-1090 Vienna, Austria
http://www.vcpc.univie.ac.at/qc/

Abstract. We report on work to parallelize QC-lib, a C++ library for
the simulation of quantum computers at an abstract functional level. Af-
ter a brief introduction to quantum computing, we give an outline of QC-
lib, then describe its parallelization using MPI, and present performance
measurements made on a Beowulf cluster. Using more processors allowed
larger problems to be solved, and reasonable speedups were obtained for
the Hadamard transform and Grover’s quantum search algorithm.

1 Introduction

Quantum computers are devices that process information using physical phe-
nomena unique to quantum mechanics, and which have the potential to be able
to solve certain problems such as prime factorization spectacularly faster than
any conventional computer [1]. In a classical computer the basic unit of infor-
mation is the bit, a two-state device that can represent the values 0 and 1. The
quantum analogue of the bit is a two-state quantum system, such as an electron’s
spin or a photon’s polarization, which has come to be known as a qubit. The dif-
ference between a qubit and a bit is that a qubit can exist not only in the states
0 and 1, but also in a mixture of both of them, called a superposition state. Fur-
thermore, whereas a register of n bits can be in any one of 2n states, storing one
of the numbers 0 to 2n− 1, a register of n qubits can be in a superposition of all
2n states, and a function applied to a quantum register in a superposition state
acts on all 2n values at the same time! This is known as quantum parallelism,
and it is one of the key ingredients in the power of quantum computers.

Unfortunately, when a quantum register in a superposition state is measured,
the result obtained is only one of the 2n possible values, at random. However all is
not lost, as the probabilities of measuring the different values can be manipulated
by operating on a quantum register with quantum gates, which are the quantum
analogue of logic gates. Quantum algorithms consist of sequences of quantum
gate operations and optionally measurements, and it turns out that algorithms
exist that are able to exploit quantum parallelism, and to leave an output register
in a state where the probability of obtaining the value that is the answer to the
problem is very close to one, giving an advantage over classical algorithms.

However, building quantum computers is a huge technological challenge, and
quantum computing hardware is not currently available outside physics research
labs, so simulators present an attractive alternative for experimenting with quan-
tum algorithms. Furthermore, they offer the only way to run programs on more
than seven qubits, which is the current state of the art in experimental hardware.
Simulators also help debugging of quantum programs, allowing direct examina-
tion of the quantum state, which is not possible in physical quantum computers.
Simulators suffer from a problem, which is that their execution time and memory
requirements increase exponentially with the number of qubits. Parallelization
alleviates this problem, allowing more qubits to be simulated in the same time
or the same number to be simulated in less time. Many simulators exist, but few
for parallel systems. Niwa et al. [2] describe one and review related work.

2 Qubits, Registers and Gates

The state of a qubit can be represented by a two-dimensional complex vector of
length 1. The states that are the quantum analogues of 0 and 1 are called the
computational basis vectors, and they are written |0〉 and |1〉, in a notation due
to Dirac. In terms of vectors, they are conventionally defined to be

|0〉 =
(

1
0

)
, |1〉 =

(
0
1

)
, (1)

and a general qubit state is

α|0〉+ β|1〉 =
(

α
β

)
, (2)

where α and β are complex numbers called amplitudes. Measurement of the state
always gives either |0〉, with probability |α|2, or |1〉, with probability |β|2, which
is consistent with the normalization condition that the vector’s length is 1, which
is |α|2 + |β|2 = 1.

The state of an n-qubit register can be represented as a 2n-dimensional com-
plex vector of length 1. If we call the ith basis state |i〉, where 0 ≤ i ≤ 2n − 1,
then a general n-qubit state has the form

2n−1∑

i=0

αi|i〉 , (3)

where αi is the ith complex component of the vector representing the state, |αi|2
is the probability that measurement will give the value i, and the normalization
condition is

∑2n−1
i=0 |αi|2 = 1. The numbers labelling the basis states are often

written in binary, to show the value of each component qubit in the register. For
example, the computational basis vectors for a two qubit register are

|00〉 =




1
0
0
0


 , |01〉 =




0
1
0
0


 , |10〉 =




0
0
1
0


 , |11〉 =




0
0
0
1


 . (4)

Any n-qubit gate (operator) can be represented as a 2n× 2n unitary matrix, i.e.
a complex matrix U with the property that U†U = I. The operation of a gate
on a quantum register is implemented by matrix multiplication. The only non-
trivial classical single-bit gate is the NOT gate, but there are many non-trivial
single-qubit gates, for example the Hadamard gate:

H =
1√
2

(
1 1
1 −1

)
. (5)

This gate is useful because applying it to either of the basis states produces an
equal mixture of both of them: H|0〉 = 1√

2
(|0〉+ |1〉) and H|1〉 = 1√

2
(|0〉 − |1〉).

The prototypical multi-qubit gate is the controlled-NOT or CNOT gate. It
has two inputs, known as the control and target qubits, and two outputs. If the
control qubit is set to 0, the target qubit is unchanged, and if the control qubit
is set to 1, the target qubit is flipped (|c, t〉):

|00〉 → |00〉; |01〉 → |01〉; |10〉 → |11〉; |11〉 → |10〉 . (6)

3 QC-Lib

QC-lib is a C++ library for the simulation of quantum computers at an ab-
stract functional level [3], and it is used as the back end of an interpreter for the
QCL Quantum Computation Language [4]. Its main features are basis vectors of
arbitrary length (not limited to word length), efficient representation of quan-
tum states using hash tables, nesting of substates and arbitrary combinations of
qubits, composition and tensor product of operators (gates), and easy addition
of new operators using class inheritance. The top-level classes in QC-lib are:

bitvec - arbitrary length bit vectors which represent basis states
term a basis vector with a complex amplitude
termlist - a list of terms: the internal representation of a quantum state
quState - user class for quantum states
opOperator - user class for quantum operators

The data structure of class termlist is a linear array in combination with a
hash table. Only terms with non-zero amplitudes are stored, and the array and
hash table are dynamically doubled in size if the array fills up.

The class quState contains two sub-classes, quBaseState which contains
actual state information, and quSubState which represents substates. An object
of class quBaseState represents the state of the whole quantum memory, and
the quSubState class can be used to allocate subregisters. A quBaseState object
contains two termlist objects. One contains the terms in the current state, and
the other is a term buffer to accumulate the result of an operation on the state.

A sub-class of opOperator called opMatrix implements the representation of
an n-qubit operator as a 2n×2n complex matrix, storing the non-zero elements of
each row in an array of lists. However, most operators are simpler, only working

on a few qubits, or substituting one basis vector for another, with or without
a phase factor, and opOperator has sub-classes for a number of such special
cases, such as permutation of qubits, quantum functions, general single-qubit
operations, and the CNOT gate.

The following example program uses QC-lib to implement the Hadamard
transform, which is the Hadamard gate applied to every qubit in a register:

void H(quState& qs) {

opBit H1(1,1,1,-1,sqrt(0.5)); // define Hadamard gate H

for(int i=0; i<qs.mapbits(); i++) { // loop over qubits in register

quBit qbit(i,qs); // create one-qubit substate

H1.apply(qbit); } // apply H to the qubit

}

quBaseState qs(20); // allocate 20-qubit register qs

H(qs); // apply the Hadamard transform to qs

4 Parallelization

The parallelization is being carried out in the message-passing style of program-
ming, using the MPI message passing interface. The parallelization strategy is
to distribute the representation of the quantum memory. Each processor stores
a subset of the terms, and operators are applied only to local terms. The result
of a local operation in general includes terms that are not owned by the proces-
sor, which must be communicated to their owning processors. The program is
SPMD, with each processor running a copy of the same code.

The data distribution scheme for terms is that on 2n processors, the n least
significant qubits of their basis states are interpreted as the number of the pro-
cessor that owns them. For example, the processor allocation of basis states for
a four-qubit register on the four processors P0–P3 is:

P0

P1

P2

P3

|0000〉, |0100〉, |1000〉, |1100〉
|0001〉, |0101〉, |1001〉, |1101〉
|0010〉, |0110〉, |1010〉, |1110〉
|0011〉, |0111〉, |1011〉, |1111〉

4.1 Communication Pattern for Single-Qubit Operators

Consider a general single-qubit operator U =
(

u11 u12

u21 u22

)
operating on a sin-

gle qubit with state α|0〉 + β|1〉. For simplicity, assume that there are just two

processors, and the qubit in question is the least significant one, and so deter-
mines the data distribution. After the operation of U locally on each processor,
terms are created that are not owned by the processor, and so communication
is necessary. Specifically, βu12|0〉 has to be sent from P1 → P0 and αu21|1〉 from
P0 → P1:

P0

P1

α|0〉
β|1〉

U→ αU |0〉
βU |1〉 =

αu11|0〉+ αu21|1〉
βu12|0〉+ βu22|1〉

Comm−→ (αu11 + βu12)|0〉
(αu21 + βu22)|1〉

When a single-qubit operator is applied to the ith qubit of a register, it is
applied to the ith qubit of every term in the superposition state of the register,
leaving the other qubits in each term unchanged. For each term in the initial
state, at most two terms are therefore created (if one or more of the uij are
zero, less terms will be created). If the ith qubit is not one of the qubits that
determines the data distribution, then no communication is necessary, as both
new terms are owned by the original processor. Otherwise, one of the new terms
is locally owned and the other one is remotely owned and must be communicated.
For each processor, all the remotely owned terms are owned by the same other
processor, as a single bit has been flipped in the distribution key. Symmetrically,
the remote processor potentially creates terms that are owned by the local one.
In general therefore, bi-directional communication is needed between disjoint
pairs of processors.

If the basis vectors of an n-qubit register are thought of as the coordinates
of the corners of an n-dimensional hypercube, such that the ith qubit represents
a coordinate of 0 or 1 in the ith dimension, then the communication pattern
generated by an operation on the ith qubit can be visualized as being along
parallel edges of the hypercube with data movement in its ith dimension.

4.2 Parallelization of Single-Qubit Operators

The representation of the distributed quantum memory has been encapsulated
in class quBaseState, without altering the operator invocation mechanism in the
sequential version of QC-lib. In the parallel version, each quBaseState object
has a second term buffer (a termlist object), to accumulate terms destined for
remote processors. The local and remote terms that result from the action of
single-qubit operators are accumulated separately, and when the accumulation is
complete, the remote term buffer is sent to the remote process, and reciprocally,
the buffer that the remote process sent is received. This exchange of data between
pairs of processes is implemented using the MPI function MPI Sendrecv(). The
received terms are then merged into the local term buffer. Finally, the term
buffer is swapped with the termlist for the current state, so that the new terms
become the current state, and the old one is ready to be used to accumulate the
result of the next operation.

Currently only a few of the operator sub-classes of opOperator have been
parallelized, but they include the general single-qubit operator and the CNOT
gate, which together are universal for quantum computation, though they don’t
necessarily offer the most efficient way of achieving a particular operation.

5 Performance Measurements

Performance measurements were made on a Beowulf cluster with 16 compute
nodes, each having a 3,06 GHz Pentium 4 processor and 2 GByte of 266 MHz dual
channel DDR-RAM, running Linux 2.4.19. The nodes were connected by two
independent networks, Gigabit Ethernet for message-passing communication,
and Fast Ethernet for job submission, file access, and system administration.

Figure 1 shows how the run time for the Hadamard transform varies with
the problem size (number of qubits) for different numbers of processors. The
run time for the sequential code is also shown, and it can be clearly seen from
the semi-logarithmic plot that it increases by a constant factor for every extra
qubit. Each extra qubit corresponds to a doubling of the problem size, which is
consistent with the slope of the line, which corresponds to an increase in run time
by a factor of 2.05 for each extra qubit. The parallel version of the program run
on one processor has very little overhead compared with the sequential version,
which is not surprising, as it does not perform any communication. When larger
numbers of processors are used for smaller problem sizes there is more of an
overhead, but as the problem size increases, the scaling behaviour of the parallel
code becomes similar to that of the sequential version.

Figure 2 shows how the speedup varies with the number of processors, for
various problem sizes. The speedup is relative to the run time of the sequential
code for the same problem size, but since the sequential code ran out of memory
for the larger problem sizes, the sequential run time for those cases had to be
estimated, which was done by by linearly extrapolating a least squares fit to the
the logarithm of the run time versus the number of qubits. For small problem
sizes there is actually a decrease in speedup for larger numbers of processors,
which is to be expected for any problem size if enough processors are used.
For larger problem sizes reasonable speedups were obtained, up to 9.4 on 16
processors for the largest problem size.

The Hadamard transform is a sufficiently simple operation, that it was pos-
sible to make make runs that used all the system’s available memory within a
reasonable run time. It was found that both the sequential version of the pro-
gram and the parallel version on one processor could simulate a maximum of
25 qubits, and that each doubling of the number of processors increased the
maximum number of qubits by one, up to a maximum of 29 qubits for all 16
processors. This is consistent with the amount of memory needed by the program
to store quantum states, which in the sequential version of the code, for quantum
states with no more than 232 terms, is 64 bytes per term. The parallel version
of the code contains an extra termlist to buffer terms that need to be com-
municated, which means that it potentially needs up to 50% more memory, but

in the Hadamard transform very few terms need to be communicated, as only
changes to the least significant qubits cause communication, and these are pro-
cessed first, but large numbers of terms are not created until the most significant
qubits are processed. Operating on n qubits, the Hadamard transform ultimately
produces a state with 2n terms, so the amount of memory needed to represent
it is approximately 64(2n) = 2n+6 bytes, and 25 qubits require 2 GByte, which
was the amount of memory available. Not all algorithms use such a large number
of terms with non-zero amplitudes, and as only these are explicitly represented
by QC-lib, some algorithms can be run for still larger numbers of qubits.

 1

 10

 100

 22 23 24 25 26 27 28 29

T
im

e
(s

)

Qubits

Hadamard Transform

SEQ
Np=1
Np=2
Np=4
Np=8

Np=16

Fig. 1. Run time for Hadamard transform

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

Hadamard Transform

Nq=22
Nq=23
Nq=24
Nq=25
Nq=26
Nq=27
Nq=28
Nq=29

Ideal

Fig. 2. Speedup for Hadamard transform

Grover’s quantum search algorithm [5] was also implemented using QC-lib,
and the run time was measured for the portion of the algorithm up to the
point when the first measurement is made. This was done to allow meaningful
comparison of run times, as in the full version of the algorithm, there is a finite
probability that the search will fail, and that it has to be repeated, so the run
time is non-deterministic. Figure 3 shows how the run time for Grover’s algorithm
varies with the problem size, for different numbers of processors. The behaviour
is similar to that in the case of the Hadamard transform, but in this case the
slope of the line for the sequential run time corresponds to an increase in run
time by a factor of 3.10 for each extra qubit. This is partly accounted for by the
fact that the number of iterations in the main loop of the algorithm increases
by a factor of

√
2 for each extra qubit, and taken together with the doubling of

the problem size, that would imply an increase in run time by a factor of 2.82.
Figure 4 shows how the speedup varies with the number of processors, for

various problem sizes. Significantly better speedups are obtained than for the
Hadamard transformation. For just 17 qubits, which is less than the minimum
number of qubits considered for the Hadamard transform, a speedup of 11.2 was
obtained on 16 processors, and it is to be expected that with more qubits the
performance would be even better.

 0.1

 1

 10

 100

 1000

 10000

 10 11 12 13 14 15 16 17

T
im

e
(s

)

Qubits

Grover’s Algorithm

SEQ
Np=1
Np=2
Np=4
Np=8

Np=16

Fig. 3. Run time for Grover’s algorithm

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

S
pe

ed
up

Number of processors

Grover’s Algorithm

Nq=10
Nq=11
Nq=12
Nq=13
Nq=14
Nq=15
Nq=16
Nq=17

Ideal

Fig. 4. Speedup for Grover’s algorithm

6 Conclusion

Sufficient functionality of QC-lib has been implemented to simulate universal
quantum computation. We have implemented the Hadamard transform and
Grover’s algorithm using our library, and have made performance measurements
for these codes. Promising speedups were obtained. Future work will include the
implementation of static control of the distribution of qubits by the programmer,
more operators, implementation of Shor’s prime factorization algorithm [6], and
the investigation of its performance. In the longer term, dynamic redistribution
of qubits will be implemented and a load-balancing strategy will be developed.

Acknowledgements

This work was partially supported by the Special Research Program SFB F011
“AURORA” of the Austrian Science Fund FWF.

References

1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information.
Cambridge University Press (2000)

2. Niwa, J., Matsumoto, K., Imai, H.: General-purpose parallel simulator for quantum
computing (2002) http://arXiv.org/abs/quant-ph/0201042.

3. Ömer, B.: Simulation of quantum computers (1996)
http://tph.tuwien.ac.at/∼oemer/doc/qcsim.ps.

4. Ömer, B.: Quantum Programming in QCL. Master’s thesis, Vienna University of
Technology (2000) http://tph.tuwien.ac.at/∼oemer/doc/quprog/index.html.

5. Grover, L.K.: A fast quantum mechanical algorithm for database search. In: Proc.
of the 28th annual ACM Symposium on the Theory of Computation (Philadelphia,
Pennsylvania), New York, ACM Press (1996) 212–219

6. Shor, P.W.: Polynomial-time algorithms for prime factorization and discrete loga-
rithms on a quantum computer. SIAM J. Comp. 26 (1997) 1484–1509

