The MPI Message Passing Interface Standard

Lyndon Clarke!, Edinburgh Parallel Computing Centre, The University of Ed-
inburgh, James Clerk Maxwell Building, The King’s Buildings, Mayfield Road,
Edinburgh EH9 3JZ, United Kingdom. Email 1yndon@epcc.ed.ac.uk

Ian Glendinning?, Department of Electronics and Computer Science, University of
Southampton, Southampton, SO9 5NH, United Kingdom. Email iglQecs.soton.ac.uk

Rolf Hempel?, GMD (German National Research Centre for Computer Science),
Postfach 1316, 53731 Sankt Augustin, Germany. Email Rolf.Hempel@gmd.de

Abstract

The diverse message passing interfaces provided on parallel and distrib-
uted computing systems have caused difficulty in movement of application
software from one system to another and have inhibited the commercial
development of tools and libraries for these systems. The Message Passing
Interface (MPI) Forum has developed a de facto interface standard which
was finalised in Q1 of 1994. Major parallel system vendors and software
developers were involved in the definition process, and the first implementa-
tions of MPI are already appearing. This article presents an overview of the
MPI initiative and the standard interface, in particular those aspects which
merge demonstrated research with common practice.

1 Introduction

The message passing paradigm is the most generally applicable and efficient pro-
gramming model for parallel machines with distributed memory and has been used
widely in parallel and distributed computing systems for some years. The devel-
opment of parallel computing has been hindered by the absence of a standard
message passing interface.

During 1992 the international Message Passing Interface (MPI) initiative was
founded by Oak Ridge National Laboraory and the Center for Parallel Computing
at Rice University [8]. The goal of this effort was to define a message passing
interface wihch would be efficiently implemented on a wide range of parallel and
distributed computing systems, this establishing a de facto standard and avoiding
the overhead and delays associated with an official standardization process.

The procedures of the MPI Forum were modelled on those of the HPF Forum,
in particular the process was open to all interested parties. Much of the technical

1Work was supported by the Science and Engineering Research Council through NACC grant
B/28667

2Work supported in part by the Commission of the European Communities through ESPRIT
project 6643 (PPPE)



discussion was conducted via electronic mail, and the forum met every six weeks in
Dallas where formal decisions were made. The first complete draft [3] was presented
in November 1993 at the Supercomputing Conference ’93 in Portland, Oregon. Two
further meetings were held early in 1994, the first at INRIA Sophia Antipolis,
France and the second at Knoxville, Tennesee. These meetings considered public
comment on the November draft which resulted in final changes and approval of
the standard by the Forum. The finished interface document is planned to be
released in April 1994.

2 Overview of MPI

MPI is intended to be the standard message passing interface for parallel applica-
tion and library programming. The basic content of MPI is point—to—point commu-
nication between pairs of processes and collective communication within groups of
processes. MPI also contains more advanced message passing features which allow
the user to manipulate process groups, provide topological structure for process
groups, and support the development and utilisation of parallel libraries.

The computing platforms for MPI comprise homogeneous and heterogeneous
parallel and distributed systems. Every message whether in point-to—point or col-
lective communication has an associated data type. The primitive data types of
the host language, for example INTEGER and REAL in Fortran, are supported. MPI
also provides very general facilities which can be used to describe struct types in
C, and non-contiguous data in either C or Fortran, as “derived” data types. The
data types of MPI provide all the information required for data conversion in het-
erogeneous environments, and do not preclude efficient implementation of MPI in
homogeneous environments. They also allow the user to send and receive messages
with complicated storage patterns without the need to copy data in to and out of
message buffers;, and allow an implementation to optimise communications with
such storage patterns.

MPI does not make provision for process creation aside from requiring at least
a basic SPMD process model from implementations. Other important issues such
as parallel input/output and remote read/write were not included in MPI because
the committee felt that research into these features is not yet mature enough for
standardisation, or that there was insufficient time to establish concensus during
this phase of MPI. The MPI Forum intends to cover further topics in a second
phase which may commence as early as the second half of 1994.

3 Groups, contexts and communicators

Point—to—point and collective communications within MPI are performed within
process groups. MPI defines a group as an ordered set of process identifiers, each
of which is assigned a numerical rank within the group, between zero and the size



of the group. Communications within MPI are also performed within a commu-
nication context which insulates messages in different parts of the program from
one another. The defining property of a context is that a message sent in one
context can only be received in that same context. The communication context is
the primary mechanism for isolation of messages in different libraries and the user
program from one another.

Process groups are user level objects in MPI but communication contexts are
not directly visible. MPI bundles the process group and communication context
concepts into a user level object called a communicator which provides commu-
nication services within a unique scope, as in the Zipcode [7] and CHIMP [5, 1]
interfaces. MPI defines an initial communicator MPI_.COMM_WORLD which has
a group containing all processes of the program and a unique communication con-
text.

MPI provides routines which allow the user to dynamically create new com-
municators, similar to the group routines of EUT [4]. MPI.COMM_DUP creates
a duplicate of an existing communicator, i.e. a new communicator with the same
group of processes and a different communication context. This routine 1s key to
the construction of robust communicative parallel libraries. MPI_.COMM_SPLIT
creates one or more new communicators which contain distinct subgroups of an ex-
isting communicator and of course a different context. This routine is key to clear
expression of task and control parallel programs. In the simplest use of MPI, which
corresponds to a number of current communication libraries, MPI_.COMM_WORLD
is the only communicator used in the program.

4 Point-to-point communication

The point-to-point message-passing routines form the core of the MPI stand-
ard, the basic operations being send and receive. They allow messages to be sent
between pairs of processes, with message selectivity based explicitly on message
tag and source process, and implicitly on communication context. Each process
can execute its own code, in MIMD style, and can be sequential or multithreaded.
There is no explicit support for threads, but care has been taken to make MPI
“thread safe”, by avoiding the use of global state.

The send and receive primitives are provided in a blocking form in which the
sender buffer can be reused immediately on return from send and the receiver buffer
contains the complete message on return from receive. There is one blocking receive
primitive MPI_RECV. There are four blocking send primitives corrspeonding to
the four communication modes in MPI.

Standard The sender is blocked until the send buffer can be reused without alter-
ing the message. The receiver is blocked until the message has been copied
into the receive buffer. Since the system is expected to copy the message
subject to buffer resources, the send-recv pair does not guarantee synchron-



isation. This mode seems to best represent common practice. The send prim-
itive is MPI_SEND.

Synchronous The sender is blocked until the receiver issues the corresponding
receive. No system buffer is required and the message can be transferred
without intermediate copies, at the expense of synchronisation. The send
primitive is MPI_SSEND.

Ready-receive The program is in error if the send is issued before the matching
receive has been issued. This allows a simple protocol where the message is
sent “in hope” and dropped if there is no ready receive, but use demands
special care. The send primitive is MPI_RSEND.

Buffered This mode allows the user to control the space available for buffering
within a defined buffer model, providing guaranteed portability for programs
that demand message buffering. The send primitive blocks until the message
1s copied into the buffer space or is in error if insufficient buffer space was
available. The send primitive is MPI_BSEND.

MPI also provides primitives of the non-blocking, or immediate return, form,
MPI_I?SEND and MPILIRECV in which the message buffer must not be used until
the communication has completed, similar to the immediate routines in NX/2 [6].
There 1s a small but comprehensive set of routines to test and wait for completion
of non-blocking functions. This functionality, which is semantically orthogonal to
the four communication modes, allows the system to overlap communication with
computation and allows the user to write programs which do not incur the overhead
of copying message data into intermediate buffers.

5 Collective communication

Collective communications are provided where all processes in a process group are
involved in a collective operation. A collective function is called as if it contained
a group synchronisation, although this property is not mandated since efficient
implementations may not synchronise. We now decribe a familiar selection of the
collective routines.

MPI_ BARRIER Synchronisation of every processes within a group.

MPI_BCAST Every process within a group receives data broadcast by a “root”
process.

MPI_GATHER Every process within a group sends data to a “root” which
stores the data in rank order.

MPI_ SCATTER The inverse of MPI_.GATHER, where a “root” process sends
sections of data to every process within a group in rank order.



MPI_REDUCE Performs a parallel reduction over every group process within a
group. The operation is selected from a set of defined arithmetic and logical
operators or is described as a user function. The output i1s available to a
“root” process, every process, or scattered over the processes.

MPI also contains collective routines for all-to-all global communication, all-
to-all personal communication otherwise known as complete exchange, and inclus-
ive parallel prefix otherwise known as scan.

6 Process topologies

Many numerical applications have a geometrical background. For example, the par-
allelization of a PDE solver on a three—dimensional grid leads to a corresponding
arrangement of the processes. The most natural way of addressing those processes
is to specify their coordinates in the grid, as opposed to their linear ranks in the
group. MPI supports the setup of general Cartesian process structures, as well as
arbitrary process graphs, similar to the PARMACS interface [2], Process topologies
in MPI are assigned to process groups within communicators, and process ranks in
the group are ordered by topological location. Topologies are created and deleted
at run-time, and a process can exist within many topologies simultaneously.

Cartesian topologies are created by calling MPI_.CART and can also be de-
rived from higher dimension Cartesian topologies by calling MPI_.CART_SUB. For
example these functions can be used to create a two dimensional process grid
group and the corresponding one dimensional process row and column groups.
Since group boundaries limit the scope of collective operations the process topo-
logies can easily be used for operations like broadcast and reduction in matrix
columns.

Graph topologies are created by calling MPI_.GRAPH which accepts an ad-
jacency list as the description of the graph. This complements the Cartesian topo-
logy and 1s applicable in problems which are parallelised by the block structured
domain decomposition approach where adjacent blocks are mapped to adjacent
processors in the graph. Due to the locality principle of PDE methods, a process
in a topology tends to exchange most messages with adjacent processes. Thus, the
topology information can be used by an MPI implementation to minimize network
congestion by mapping adjacent processes onto adjacent resources.

7 Conclusion

We have briefly described features of the MPI standard including the core point to
point and collective communications, communication contexts and process groups,
and process topologies. We have not described more advanced features such as the
communicator cache facility, which allows the user to extend the collective commu-
nication and process topology capabilities of MPI, or provision for communication



between processes in different groups, which makes MPI attractive for applications
which contain internal parallel client-server or pipeline structures. The interested
reader is referred to the interface document [3].

At the time of writing two implementations of MPI are known to be available
in the public domain. The first of these has been authored by Argonne National
Laboratory and Mississipi State University, and is based on a device interface which
has been designed to allow rapid and reasonably efficient ports of MPI to parallel
systems. The device interface has been implemented using Chameleon providing a
range of platforms, and has also been ported directly to a small number of parallel
systems. The second implementation has been authored by Edinburgh Parallel
Computing Centre as a library running atop CHIMP, which also provides a range
of parallel and distributed computing systems.

References

[1] R. Alasdair A. Bruce, James G. Mills, and A. Gordon Smith. Chimp version
2.0 interface. Technical Report EPCC-KTP-CHIMP-V2-IFACE, Edinburgh
Parallel Computing Centre, University of Edinburgh, January 1993.

[2] Robin Calkin, Rolf Hempel, Hans-Christian Hoppe, and Peter Wypior. Port-
able programming with the PARMACS message—passing library. Parallel Com-
puting, special issue on message—passing interfaces, to appear.

[3] Message Passing Interface Forum. Document for a standard message-passing
interface. Technical Report CS-93-214, University of Tennessee, November
1993.

[4] D. Frye, R. Bryant, H. Ho, R. Lawrence, and M. Snir. An external user interface
for scalable parallel systems. Technical report, IBM, May 1992.

[6] James G. Mills; Lyndon J. Clarke, and Arthur S. Trew. Chimp concepts.
Technical Report EPCC-KTP-CHIMP-CONC, Edinburgh Parallel Computing
Centre, University of Edinburgh, April 1991.

[6] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Con-
ference of Hypercube Concurrent Computers and Applications, pages 384-390.
ACM Press, 1988.

[7] A.Skjellum,S. Smith, C. Still, A. Leung, and M. Morari. The Zipcode message
passing system. Technical report, Lawrence Livermore National Laboratory,
September 1992.

[8] D. Walker. Standards for message passing in a distributed memory environ-
ment. Technical Report TM-12147, Oak Ridge National Laboratory, August
1992.



