
The MPI Message Passing Interface StandardLyndon Clarke1, Edinburgh Parallel Computing Centre, The University of Ed-inburgh, James Clerk Maxwell Building, The King's Buildings, May�eld Road,Edinburgh EH9 3JZ, United Kingdom. Email lyndon@epcc.ed.ac.ukIan Glendinning2, Department of Electronics and Computer Science, University ofSouthampton, Southampton, SO9 5NH, United Kingdom.Email igl@ecs.soton.ac.ukRolf Hempel2, GMD (German National Research Centre for Computer Science),Postfach 1316, 53731 Sankt Augustin, Germany. Email Rolf.Hempel@gmd.deAbstractThe diverse message passing interfaces provided on parallel and distrib-uted computing systems have caused di�culty in movement of applicationsoftware from one system to another and have inhibited the commercialdevelopment of tools and libraries for these systems. The Message PassingInterface (MPI) Forum has developed a de facto interface standard whichwas �nalised in Q1 of 1994. Major parallel system vendors and softwaredevelopers were involved in the de�nition process, and the �rst implementa-tions of MPI are already appearing. This article presents an overview of theMPI initiative and the standard interface, in particular those aspects whichmerge demonstrated research with common practice.1 IntroductionThe message passing paradigm is the most generally applicable and e�cient pro-grammingmodel for parallel machines with distributed memory and has been usedwidely in parallel and distributed computing systems for some years. The devel-opment of parallel computing has been hindered by the absence of a standardmessage passing interface.During 1992 the international Message Passing Interface (MPI) initiative wasfounded by Oak Ridge National Laboraory and the Center for Parallel Computingat Rice University [8]. The goal of this e�ort was to de�ne a message passinginterface wihch would be e�ciently implemented on a wide range of parallel anddistributed computing systems, this establishing a de facto standard and avoidingthe overhead and delays associated with an o�cial standardization process.The procedures of the MPI Forum were modelled on those of the HPF Forum,in particular the process was open to all interested parties. Much of the technical1Work was supported by the Science and Engineering Research Council through NACC grantB/286672Work supported in part by the Commission of the European Communities through ESPRITproject 6643 (PPPE) 1



discussion was conducted via electronic mail, and the forummet every six weeks inDallas where formal decisions were made. The �rst complete draft [3] was presentedin November 1993 at the Supercomputing Conference '93 in Portland, Oregon. Twofurther meetings were held early in 1994, the �rst at INRIA Sophia Antipolis,France and the second at Knoxville, Tennesee. These meetings considered publiccomment on the November draft which resulted in �nal changes and approval ofthe standard by the Forum. The �nished interface document is planned to bereleased in April 1994.2 Overview of MPIMPI is intended to be the standard message passing interface for parallel applica-tion and library programming.The basic content of MPI is point{to{point commu-nication between pairs of processes and collective communication within groups ofprocesses. MPI also contains more advanced message passing features which allowthe user to manipulate process groups, provide topological structure for processgroups, and support the development and utilisation of parallel libraries.The computing platforms for MPI comprise homogeneous and heterogeneousparallel and distributed systems. Every message whether in point{to{point or col-lective communication has an associated data type. The primitive data types ofthe host language, for example INTEGER and REAL in Fortran, are supported. MPIalso provides very general facilities which can be used to describe struct types inC, and non-contiguous data in either C or Fortran, as \derived" data types. Thedata types of MPI provide all the information required for data conversion in het-erogeneous environments, and do not preclude e�cient implementation of MPI inhomogeneous environments. They also allow the user to send and receive messageswith complicated storage patterns without the need to copy data in to and out ofmessage bu�ers, and allow an implementation to optimise communications withsuch storage patterns.MPI does not make provision for process creation aside from requiring at leasta basic SPMD process model from implementations. Other important issues suchas parallel input/output and remote read/write were not included in MPI becausethe committee felt that research into these features is not yet mature enough forstandardisation, or that there was insu�cient time to establish concensus duringthis phase of MPI. The MPI Forum intends to cover further topics in a secondphase which may commence as early as the second half of 1994.3 Groups, contexts and communicatorsPoint{to{point and collective communications within MPI are performed withinprocess groups. MPI de�nes a group as an ordered set of process identi�ers, eachof which is assigned a numerical rank within the group, between zero and the size2



of the group. Communications within MPI are also performed within a commu-nication context which insulates messages in di�erent parts of the program fromone another. The de�ning property of a context is that a message sent in onecontext can only be received in that same context. The communication context isthe primary mechanism for isolation of messages in di�erent libraries and the userprogram from one another.Process groups are user level objects in MPI but communication contexts arenot directly visible. MPI bundles the process group and communication contextconcepts into a user level object called a communicator which provides commu-nication services within a unique scope, as in the Zipcode [7] and CHIMP [5, 1]interfaces. MPI de�nes an initial communicator MPI COMM WORLD which hasa group containing all processes of the program and a unique communication con-text. MPI provides routines which allow the user to dynamically create new com-municators, similar to the group routines of EUI [4]. MPI COMM DUP createsa duplicate of an existing communicator, i.e. a new communicator with the samegroup of processes and a di�erent communication context. This routine is key tothe construction of robust communicative parallel libraries. MPI COMM SPLITcreates one or more new communicators which contain distinct subgroups of an ex-isting communicator and of course a di�erent context. This routine is key to clearexpression of task and control parallel programs. In the simplest use of MPI, whichcorresponds to a number of current communication libraries, MPI COMM WORLDis the only communicator used in the program.4 Point-to-point communicationThe point-to-point message-passing routines form the core of the MPI stand-ard, the basic operations being send and receive. They allow messages to be sentbetween pairs of processes, with message selectivity based explicitly on messagetag and source process, and implicitly on communication context. Each processcan execute its own code, in MIMD style, and can be sequential or multithreaded.There is no explicit support for threads, but care has been taken to make MPI\thread safe", by avoiding the use of global state.The send and receive primitives are provided in a blocking form in which thesender bu�er can be reused immediately on return from send and the receiver bu�ercontains the complete message on return from receive. There is one blocking receiveprimitive MPI RECV. There are four blocking send primitives corrspeonding tothe four communication modes in MPI.Standard The sender is blocked until the send bu�er can be reused without alter-ing the message. The receiver is blocked until the message has been copiedinto the receive bu�er. Since the system is expected to copy the messagesubject to bu�er resources, the send-recv pair does not guarantee synchron-3



isation. This mode seems to best represent common practice. The send prim-itive is MPI SEND.Synchronous The sender is blocked until the receiver issues the correspondingreceive. No system bu�er is required and the message can be transferredwithout intermediate copies, at the expense of synchronisation. The sendprimitive is MPI SSEND.Ready-receive The program is in error if the send is issued before the matchingreceive has been issued. This allows a simple protocol where the message issent \in hope" and dropped if there is no ready receive, but use demandsspecial care. The send primitive is MPI RSEND.Bu�ered This mode allows the user to control the space available for bu�eringwithin a de�ned bu�er model, providing guaranteed portability for programsthat demand message bu�ering. The send primitive blocks until the messageis copied into the bu�er space or is in error if insu�cient bu�er space wasavailable. The send primitive is MPI BSEND.MPI also provides primitives of the non-blocking, or immediate return, form,MPI I?SEND andMPI IRECV, in which the message bu�er must not be used untilthe communication has completed, similar to the immediate routines in NX/2 [6].There is a small but comprehensive set of routines to test and wait for completionof non-blocking functions. This functionality, which is semantically orthogonal tothe four communication modes, allows the system to overlap communication withcomputation and allows the user to write programs which do not incur the overheadof copying message data into intermediate bu�ers.5 Collective communicationCollective communications are provided where all processes in a process group areinvolved in a collective operation. A collective function is called as if it containeda group synchronisation, although this property is not mandated since e�cientimplementations may not synchronise. We now decribe a familiar selection of thecollective routines.MPI BARRIER Synchronisation of every processes within a group.MPI BCAST Every process within a group receives data broadcast by a \root"process.MPI GATHER Every process within a group sends data to a \root" whichstores the data in rank order.MPI SCATTER The inverse of MPI GATHER, where a \root" process sendssections of data to every process within a group in rank order.4



MPI REDUCE Performs a parallel reduction over every group process within agroup. The operation is selected from a set of de�ned arithmetic and logicaloperators or is described as a user function. The output is available to a\root" process, every process, or scattered over the processes.MPI also contains collective routines for all-to-all global communication, all-to-all personal communication otherwise known as complete exchange, and inclus-ive parallel pre�x otherwise known as scan.6 Process topologiesMany numerical applications have a geometrical background. For example, the par-allelization of a PDE solver on a three{dimensional grid leads to a correspondingarrangement of the processes. The most natural way of addressing those processesis to specify their coordinates in the grid, as opposed to their linear ranks in thegroup. MPI supports the setup of general Cartesian process structures, as well asarbitrary process graphs, similar to the PARMACS interface [2], Process topologiesin MPI are assigned to process groups within communicators, and process ranks inthe group are ordered by topological location. Topologies are created and deletedat run-time, and a process can exist within many topologies simultaneously.Cartesian topologies are created by calling MPI CART and can also be de-rived from higher dimension Cartesian topologies by calling MPI CART SUB. Forexample these functions can be used to create a two dimensional process gridgroup and the corresponding one dimensional process row and column groups.Since group boundaries limit the scope of collective operations the process topo-logies can easily be used for operations like broadcast and reduction in matrixcolumns.Graph topologies are created by calling MPI GRAPH which accepts an ad-jacency list as the description of the graph. This complements the Cartesian topo-logy and is applicable in problems which are parallelised by the block structureddomain decomposition approach where adjacent blocks are mapped to adjacentprocessors in the graph. Due to the locality principle of PDE methods, a processin a topology tends to exchange most messages with adjacent processes. Thus, thetopology information can be used by an MPI implementation to minimize networkcongestion by mapping adjacent processes onto adjacent resources.7 ConclusionWe have brie
y described features of the MPI standard including the core point topoint and collective communications, communication contexts and process groups,and process topologies. We have not described more advanced features such as thecommunicator cache facility, which allows the user to extend the collective commu-nication and process topology capabilities of MPI, or provision for communication5



between processes in di�erent groups, which makes MPI attractive for applicationswhich contain internal parallel client-server or pipeline structures. The interestedreader is referred to the interface document [3].At the time of writing two implementations of MPI are known to be availablein the public domain. The �rst of these has been authored by Argonne NationalLaboratory andMississipi State University, and is based on a device interface whichhas been designed to allow rapid and reasonably e�cient ports of MPI to parallelsystems. The device interface has been implemented using Chameleon providing arange of platforms, and has also been ported directly to a small number of parallelsystems. The second implementation has been authored by Edinburgh ParallelComputing Centre as a library running atop CHIMP, which also provides a rangeof parallel and distributed computing systems.References[1] R. Alasdair A. Bruce, James G. Mills, and A. Gordon Smith. Chimp version2.0 interface. Technical Report EPCC-KTP-CHIMP-V2-IFACE, EdinburghParallel Computing Centre, University of Edinburgh, January 1993.[2] Robin Calkin, Rolf Hempel, Hans-Christian Hoppe, and Peter Wypior. Port-able programmingwith the PARMACSmessage{passing library. Parallel Com-puting, special issue on message{passing interfaces, to appear.[3] Message Passing Interface Forum. Document for a standard message-passinginterface. Technical Report CS-93-214, University of Tennessee, November1993.[4] D. Frye, R. Bryant, H. Ho, R. Lawrence, and M. Snir. An external user interfacefor scalable parallel systems. Technical report, IBM, May 1992.[5] James G. Mills, Lyndon J. Clarke, and Arthur S. Trew. Chimp concepts.Technical Report EPCC-KTP-CHIMP-CONC, Edinburgh Parallel ComputingCentre, University of Edinburgh, April 1991.[6] Paul Pierce. The NX/2 operating system. In Proceedings of the Third Con-ference of Hypercube Concurrent Computers and Applications, pages 384{390.ACM Press, 1988.[7] A. Skjellum, S. Smith, C. Still, A. Leung, and M. Morari. The Zipcode messagepassing system. Technical report, Lawrence Livermore National Laboratory,September 1992.[8] D. Walker. Standards for message passing in a distributed memory environ-ment. Technical Report TM-12147, Oak Ridge National Laboratory, August1992. 6


