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Abstract. This paper presents strategies and tools that have been used
in work to parallelise a satellite signal processing code. The Magellan mis-
sion to map the surface of Venus using synthetic aperture radar (SAR)
is briefly described, the Magellan SAR processor code is outlined, and
a parallelisation strategy is presented. The code’s large size and limited
documentation made the use of program analysis tools essential to im-
plement this strategy. Three tools, FORESYS, IDA and FORGExplorer,
are compared, and the use of FORGExplorer to perform code analysis is
described in detail. The techniques presented are of general applicability
to the parallelisation of codes in other application areas.

1 Introduction

VCPC (European Centre for Parallel Computing at Vienna) is collaborating
with the ICG (Institute for Computer Graphics) in Graz, Austria, and JPL (Jet
Propulsion Laboratory) in Pasadena, California, USA, to parallelize a program
which performs image analysis on the data collected by the Magellan spacecraft
on its mission to Venus. Due to the code’s complexity, and the limited amount
of documentation available for it, the use of program analysis tools has proved
to be essential, and this paper reports on tools and techniques that have been
employed, which are also relevant to parallelisation in other application areas.

2 The Magellan Mission

Magellan was carried into Earth orbit in May 1989 by space shuttle Atlantis.
Released from the shuttle’s cargo bay, it was propelled by a booster engine
toward Venus, where it arrived in August 1990. Magellan used a sophisticated
imaging radar to pierce the cloud cover enshrouding the planet Venus and map its
surface. During its 243-day primary mission, referred to as Cycle 1, the spacecraft
mapped over 80 percent of the planet with its high-resolution Synthetic Aperture
Radar (SAR). By the time it completed its third 243-day period mapping the
planet in September 1992, Magellan had captured detailed maps of 98 percent
of the planet’s surface.



Magellan orbited Venus approximately once every 3.5 hours, passing over the
poles, and mapped the surface of the planet in thin north-south strips about 25
km wide and 16000 km long [2], with range and azimuth resolution of 88 and 120
metres respectively [3]. These strips were nicknamed noodles, and some 4000 of
them were mapped during the whole mission, 1800 per cycle. The radar system
operated in burst mode, sending out trains of pulses and listening for echoes in
between the pulses, and each noodle contained data from around 5000 bursts.
The radar gathered data while looking perpendicular to the direction of motion
(Fig. 1), and measured the strength of reflected signals, as well as how long
each signal took to make the round trip, and changes in the signal frequency.
This enabled the Magellan SAR processor, running on computers back on earth,
to calculate range and azimuth coordinates from the raw data, and produce
high-resolution two-dimensional images of the planet’s surface.
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Fig. 1. Magellan SAR geometry

3 The Magellan SAR Processor

The Magellan SAR Processor is a program that implements the digital signal
processing operations needed to convert the raw signal data to image form rep-
resenting normalised backscatter return from the surface of Venus. The program
operates on burst data and produces single-look image framelets, which are then
superimposed to form multi-look image data orbit strips. Each burst is processed
using an FFT range correlation for range compression, followed by a corner turn
and azimuth compression using a “deramp-FFT” algorithm [1]. Side-lobe control,
range-walk and phase shift compensation is also done during range compression.
Azimuth processing includes side-lobe control and interpolation in azimuth spac-
ings. Finally, geometric, radiometric and multi-look processing are performed to



produce image framelets in a (oblique) sinusoidal projection. A utility program
called mosaic can be used to assemble the framelets into an image of a noodle
for viewing.

4 Parallelisation Strategy

From the outset it was decided to perform the parallelisation using the message-
passing style of programming, using the portable MPI message passing interface
[6]. The 128 node QSW CS-2 machine at VCPC is being used as a development
platform, together with the Argonne National Lab / Mississippi State University
implementation of MPI for the CS-2.

It was quickly realised that radar bursts represent a natural unit of paral-
lelism in the program, since each one can be analysed independently, except for
the final stage, called ‘look buildup’, which merges results from overlapping ob-
servations in neighbouring bursts. However, the overlap is strictly local, so only
a few neighbours will have to communicate relatively small amounts of data with
each other, after the bulk of the processing for each burst has been done, and so
an efficient parallelization of the code should be possible

Although the SAR processor is a fairly large program, the bulk of the source
code is involved with a preprocessing phase, which takes relatively little time to
execute compared to the burst processing for a whole noodle. For the sample
dataset tested on a single CS-2 node at VCPC, the initialisation phase takes
about 59 seconds, compared with about 2.5 seconds per burst, but there are
over 4000 bursts in the dataset, so the burst processing time totally dominates.
Thus, the focus of attention has been directed at the main burst processing loop,
which is located in the routine that performs the SAR correlator processing,
process_corr. The main work of the loop is done by calls to the routines shown
in Fig. 2, whose parameters are omitted for brevity.

call corr_pp
call pp_keyvar
r_nbytes = cread
call decode_sar
call range_comp
call corner_turn
call az_comp
call radio_comp
call geo_rect
call multi_look

Fill processing parameter (pp) common block
Copy key pp values to correlator common block
Read raw burst data

Decompress raw intensity values

Perform range compression

Perform a non-symmetric matrix transpose
Perform the Azimuth compression

Perform the radiometric compensation

Perform a geometric rectification

Generate multi-look image

Fig. 2. Routines in the main burst processing loop in process_corr

The final routine multi_look is the only one that does not operate indepen-
dently on each burst, and is the one that writes the image to disk. The basic



strategy is to re-code this loop so that each iteration can be executed as a task on
a separate processor. In practice, a pool of processors, each with code to execute
a single burst, would have burst data distributed to them by a master process.
The resulting image data could be collected by the same master process, or by
another process, but for now let’s assume that there is a single master controller.
In order to be able to re-code the loop like this, it is necessary to understand its
data dependences. In particular it is necessary to identify:

1. Variables which are set before the loop, and read inside it, as this implies
communication of initial values from the master to worker processes.

2. Variables which are set inside the loop and read after it, which implies com-
munication of values from the workers back to the master.

3. I/0, which must be properly sequenced. File handles need special treatment,
as you can’t write to a handle opened on another processor.

4. Variables whose values are read within the loop, before later being updated,
as their values depend on an assignment from the previous iteration, and
imply communication between worker processes. This represents an anti-
dependence from the first statement to the second.

Not only variables which are local to the subroutine containing the loop must
be considered, but also any variables in common blocks that are used either by
the routine itself, or any other routines that it calls, directly or indirectly.

Other work [5] has used a finer-grained approach, parallelising the range
and azimuth compression code, but for the Magellan SAR, processor that would
give a limited maximum possible speedup, due to the residual sequential code.
For example, it is estimated that if the range_comp, corner_turn and az_comp
routines were parallelised with 100% efficiency, a maximum speedup of only 3.0
could be obtained.

The source code for the SAR processor consists of approximately 125 thou-
sand lines of Fortran, divided among approximately 450 subroutines, together
with approximately 6500 lines of C, and although focusing on the main burst
processing loop means that only around 5500 lines (plus included common block
declarations) need to be analysed in depth, this is still a substantial body of
code, so manual analysis would be extremely laborious, and support from par-
allelisation tools is highly desirable.

5 Evaluation of Parallelisation Tools

5.1 FORESYS

FORESYS is a commercial tool marketed by SIMULOG. It is a ‘Fortran engi-
neering system’, and has a range of features that help improve scientific software.
Initially version 1.4.1 was used, and later version 1.5 when it became available.
The features of the tool that were evaluated were code browsing, program anal-
ysis, and program restructuring.



Code Browsing FORESYS has a graphical user interface which simplifies
code browsing, for example by being able to open a new window displaying the
source code for a routine, simply by highlighting its name in another window
and selecting a menu option. Although conceptually simple, this was found to
be quite useful in practice.

Program Analysis The feature of FORESYS that seemed potentially most
useful for this work was its program analysis component, called PARTITA, which
was able to graphically display dependences (Fig. 3). However, in practice the
display became cluttered with information about types of dependence which
weren’t relevant to the coarse-grained task parallelism that had been selected
for the Magellan code. There was also no obvious way to identify dependences
between variable references inside the main loop and those outside it.
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Fig. 3. Program analysis with FORESYS

Program Restructuring The tool was found to have an impressively robust
front end, which was able to handle the non-standard Fortran extensions used
in this large code, almost without complaint. It was also able to transform the
program into equivalent code in standard Fortran 77 (it can also produce Fortran
90, but that was not relevant in this case). This rather straightforward sounding
feature turned out to be its most useful one in the context of this work, as
neither IDA nor FORGExplorer could have been used without it. Neither of
them had a front end robust enough to handle the non-standard Fortran code of
the Magellan SAR. processor, which had to be cleaned up first using FORESYS.



5.2 IDA

IDA (Inter-procedural Dependency Analyser), a public domain tool available

from the University of Southampton and VCPC [4]. Tt provides interprocedural
information about Fortran programs, such as:

1. Call graphs: the calling relationships between program units

2. Traces of variables: where and how a variable is used throughout the program

3. Common block partitioning and usage: how common blocks are partitioned
into variables in each program unit, and how those variables are used in that
unit and its descendents

4. Procedure references and argument associations: the location and actual
arguments of every call to a particular procedure

IDA was designed for speed and simplicity of operation rather than sophis-
tication. It provides a text command interface, not a graphical one, and it only
performs code analysis, not code transformation. However, it is simple to use
and its analysis is fast, and its variable trace feature proved to be a useful start-
ing point for investigating some of the dependences within the Magellan SAR
code, which were later investigated more fully using FORGExplorer. IDA actu-
ally provides much of the functionality offered by FORGExplorer, but the latter
tool’s more sophisticated user interface made it much easier to use in practice.

5.3 FORGExplorer

FORGExplorer is a commercial tool marketed by Applied Parallel Research.
It has a Motif GUI, and presents a global, interprocedural view of a program.
It can perform searches and variable traces, and features an interactive, inter-
procedural Distributed Memory Parallelizer (DMP). Initially version 2.1 of the
tool was used, and later version 2.2 when it became available. The front end of
version 2.1 did not accept all of the non-standard Fortran features in the code,
and so FORESYS was used to produce a cleaned up version of the code which
FORGExplorer could process. The features of the tool that were evaluated were
code browsing, the DMP option, and the global analysis views.

Code browsing Similar facilities to those of FORESYS are provided for code
browsing, and they are similarly useful, though there are slightly more options.
The Call Subchain display, which represents the call graph as a list of routine
names, indented according to their call level, was found to be particularly useful.

Distributed Memory Parallelizer The idea of an automatic parallelizer was
obviously attractive, and so some time was invested in ‘profiling’ the routines
that were unknown to the tool, that is the ones for which it does not have source
code, such as the C routines in the Magellan code. The types of their arguments
must be specified, and whether they are read from or written to. Unfortunately,



having profiled the unknown routines, it was discovered that the program was
too complex for FORGExplorer to handle, and it looped indefinitely. It may have
been possible to get further with the DMP using semi-automatic parallelisation
options, but it was decided to be less ambitious, and to investigate the manual
inter-procedural analysis features of the basic FORGExplorer tool instead.

Global Analysis Views Manual analysis of the code using FORGExplorer’s
global analysis views proved to be a much more fruitful approach than the DMP
option, and in particular the variable tracing and common block usage displays
were found to be extremely helpful for identifying dependences. The variable
tracing display (Fig. 4) lists all program lines where a variable is referenced,
following the path that items passed through common or subprogram arguments
take, and the common block usage display shows a grid of common blocks versus
subprograms. At the intersecting cells, the usage of the common block by each
routine is summarised, according to whether variables are set and/or read.
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Fig. 4. The FORGExplorer Trace window

6 Program Analysis and Parallelisation

Having evaluated the tools, FORGExplorer was the clear winner in terms of its
program analysis features, and so it was applied to the analysis of the Magellan
SAR code, to implement the parallelisation strategy.



6.1 Isolating the Slave Process Code

The first step was to identify precisely which code from the burst loop (Fig. 2)
would be run as a slave process, and to localise it in a separate subroutine, giving
it a clean interface to the rest of the code, exclusively through common blocks.
It was decided to keep the cread() statement in the master process, together
with the two routines called before it, as that represented a particularly clean
break in the loop. The remaining routines in the loop were moved into a new
subroutine, called process_burst. The new routine inherited all of the common
block and local data declarations from process_corr, and in addition, all of the
local variables were declared to be in a new common block, so that values set in
one routine could be read by the other.

6.2 Using FORGExplorer’s ‘Reference Node’

The next step was to restrict the area of interest to the process_burst routine,
and routines called by it, by setting FORGExplorer’s ‘Reference Node’ to it. The
‘Common Blocks’ display shows that the whole program uses 415 routines, 91
of which reference data in common, spread over a total of 61 common blocks.
Setting the reference node to process_burst reduced the area of interest to 15
routines, referencing 14 common blocks. Potentially that means 15 x 14 = 210
common block references, but FORGExplorer showed that in fact there were
only 40, and so had succeeded in reducing the size of the problem considerably.

6.3 A Simplified Parallelisation Strategy

Although the complexity of the program analysis had now been much reduced,
the dependencies within the multi_look code were still fairly complex, and in
order to obtain an initial parallel version of the code as quickly as possible,
it was decided to first construct a simpler parallel version of the code than
originally planned, by moving the call to multi_look () out of process_burst,
into its calling routine process_corr. In this scheme, the maximum amount of
parallelisation is limited by the sequential code remaining in multi_look, but
the analysis is significantly simplified, as just 8 routines need to be considered in
process_burst, and there are a total of just 14 references to 8 common blocks.

6.4 Dependence Analysis

The dependences between the master and slave processes were then analysed,
so that the communications necessary between them in the parallelised code
could be determined. This was done using the common block displays for both
process_burst and process_corr, together with the variable tracing display.
The ‘Common Blocks’ display allows a display of each individual common
block to be opened, which shows a table of variables in the common block ver-
sus the routines that access them, and for each variable reference it it indicated



whether it is read and/or set. Variables in the common blocks that were ref-
erenced within process_burst fell into three categories, according to whether
they contained variables that were:

1. Read but not set within process_burst
2. Set, within process_burst and read afterwards in process_corr
3. Set and then read within process_burst, but not used in process_corr

Those in the first category were the easiest to identify, since it was enough
that all their references were reads, but for those in the other two categories,
it was necessary to check the read and write usage of the individual variables
in the common blocks, since different variables set in a common block may or
may not be read later. This was done using the variable tracing display, which
also revealed accesses to common block variables that were passed to routines
as arguments, although the common block was not declared in the routine, in
which case the references were not indicated in the common blocks display. The
variable tracing feature was also used to check for anti-dependences within the
burst loop (a variable read followed by a set), but none were found. Fig. 5
summarises the results of the dependence analysis, where the numbers in the
grid cells correspond to the categories of reading and writing defined above.

ant_weight|az_comp|cfft|geo_rect|init_fft|process_burst|{radio_comp|range_comp
/buffer/ 2,3
/fft_aux/ 3 3
/key_var/ 1 1 1 1 1,3 1
Joverlay _c12/ 2,3
/pcloc/ 1
/po_a/ 1
/s_weight/ 1
/test_burst_no/ 1

Fig. 5. Results of dependence analysis - Common blocks vs. routines

The communication of variables between master and slave processes can now
easily be deduced. Variables in category 1 must be sent to the slave when it
starts to execute, those in the category 2 must be sent back to the master when
the slave has finished its processing, and those in category 3 require no action.

6.5 Parallelisation

Although the slave code was isolated from the rest at an early stage in the
work, the whole program was kept sequential for as long as possible, so that it
could be compiled and tested after each modification, to make sure that it still
behaved as before, and so that the global analysis features of FORGExplorer
could continue to be used on the whole code. Eventually, having performed the
dependence analysis, the code was split into two executables, one for the slave
process, containing the code for the process_burst routine, and one for the



master process containing the rest of the code. Further analysis showed that the
large arrays in the common block /BUFFER/ could be split between the master
and the slave, which reduced the size of both executables considerably, which is
important as they are close to the limit of available memory on the CS-2. The
insertion of the MPI communication calls is currently being performed.

7 Conclusion

The parallelisation strategy that has been adopted for the Magellan SAR pro-
cessor is to re-code the burst processing loop so that part of each iteration can
be executed as a task on a separate processor. Due to the complexity of the
code, program analysis tools were needed to help implement this strategy. The
FORESYS, IDA and FORGExplorer tools were evaluated regarding their suit-
ability for the task, and it was found that the most effective approach was to use
FORGExplorer’s variable trace and common block usage facilities, in conjunc-
tion with FORESYS as a preprocessor to clean up the code. The data depen-
dences for a slightly simplified parallelisation strategy were analysed, and work
has begun to implement the corresponding parallel program. FORGExplorer is
a general tool, and the techniques that have been described are also applicable
to the parallelisation of codes in other application areas.
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