
Parallelisation of a Satellite Signal Pro
essingCode - Strategies and ToolsIan GlendinningVCPCEuropean Centre for Parallel Computing at ViennaLie
htensteinstra�e 22, A-1090 Vienna, Austriaian�v
p
.univie.a
.atAbstra
t. This paper presents strategies and tools that have been usedin work to parallelise a satellite signal pro
essing 
ode. The Magellan mis-sion to map the surfa
e of Venus using syntheti
 aperture radar (SAR)is brie
y des
ribed, the Magellan SAR pro
essor 
ode is outlined, anda parallelisation strategy is presented. The 
ode's large size and limiteddo
umentation made the use of program analysis tools essential to im-plement this strategy. Three tools, FORESYS, IDA and FORGExplorer,are 
ompared, and the use of FORGExplorer to perform 
ode analysis isdes
ribed in detail. The te
hniques presented are of general appli
abilityto the parallelisation of 
odes in other appli
ation areas.1 Introdu
tionVCPC (European Centre for Parallel Computing at Vienna) is 
ollaboratingwith the ICG (Institute for Computer Graphi
s) in Graz, Austria, and JPL (JetPropulsion Laboratory) in Pasadena, California, USA, to parallelize a programwhi
h performs image analysis on the data 
olle
ted by the Magellan spa
e
rafton its mission to Venus. Due to the 
ode's 
omplexity, and the limited amountof do
umentation available for it, the use of program analysis tools has provedto be essential, and this paper reports on tools and te
hniques that have beenemployed, whi
h are also relevant to parallelisation in other appli
ation areas.2 The Magellan MissionMagellan was 
arried into Earth orbit in May 1989 by spa
e shuttle Atlantis.Released from the shuttle's 
argo bay, it was propelled by a booster enginetoward Venus, where it arrived in August 1990. Magellan used a sophisti
atedimaging radar to pier
e the 
loud 
over enshrouding the planet Venus and map itssurfa
e. During its 243-day primary mission, referred to as Cy
le 1, the spa
e
raftmapped over 80 per
ent of the planet with its high-resolution Syntheti
 ApertureRadar (SAR). By the time it 
ompleted its third 243-day period mapping theplanet in September 1992, Magellan had 
aptured detailed maps of 98 per
entof the planet's surfa
e.



Magellan orbited Venus approximately on
e every 3.5 hours, passing over thepoles, and mapped the surfa
e of the planet in thin north-south strips about 25km wide and 16000 km long [2℄, with range and azimuth resolution of 88 and 120metres respe
tively [3℄. These strips were ni
knamed noodles, and some 4000 ofthem were mapped during the whole mission, 1800 per 
y
le. The radar systemoperated in burst mode, sending out trains of pulses and listening for e
hoes inbetween the pulses, and ea
h noodle 
ontained data from around 5000 bursts.The radar gathered data while looking perpendi
ular to the dire
tion of motion(Fig. 1), and measured the strength of re
e
ted signals, as well as how longea
h signal took to make the round trip, and 
hanges in the signal frequen
y.This enabled the Magellan SAR pro
essor, running on 
omputers ba
k on earth,to 
al
ulate range and azimuth 
oordinates from the raw data, and produ
ehigh-resolution two-dimensional images of the planet's surfa
e.

Fig. 1. Magellan SAR geometry
3 The Magellan SAR Pro
essorThe Magellan SAR Pro
essor is a program that implements the digital signalpro
essing operations needed to 
onvert the raw signal data to image form rep-resenting normalised ba
ks
atter return from the surfa
e of Venus. The programoperates on burst data and produ
es single-look image framelets, whi
h are thensuperimposed to form multi-look image data orbit strips. Ea
h burst is pro
essedusing an FFT range 
orrelation for range 
ompression, followed by a 
orner turnand azimuth 
ompression using a \deramp-FFT" algorithm [1℄. Side-lobe 
ontrol,range-walk and phase shift 
ompensation is also done during range 
ompression.Azimuth pro
essing in
ludes side-lobe 
ontrol and interpolation in azimuth spa
-ings. Finally, geometri
, radiometri
 and multi-look pro
essing are performed to



produ
e image framelets in a (oblique) sinusoidal proje
tion. A utility program
alled mosai
 
an be used to assemble the framelets into an image of a noodlefor viewing.4 Parallelisation StrategyFrom the outset it was de
ided to perform the parallelisation using the message-passing style of programming, using the portable MPI message passing interfa
e[6℄. The 128 node QSW CS-2 ma
hine at VCPC is being used as a developmentplatform, together with the Argonne National Lab / Mississippi State Universityimplementation of MPI for the CS-2.It was qui
kly realised that radar bursts represent a natural unit of paral-lelism in the program, sin
e ea
h one 
an be analysed independently, ex
ept forthe �nal stage, 
alled `look buildup', whi
h merges results from overlapping ob-servations in neighbouring bursts. However, the overlap is stri
tly lo
al, so onlya few neighbours will have to 
ommuni
ate relatively small amounts of data withea
h other, after the bulk of the pro
essing for ea
h burst has been done, and soan eÆ
ient parallelization of the 
ode should be possibleAlthough the SAR pro
essor is a fairly large program, the bulk of the sour
e
ode is involved with a prepro
essing phase, whi
h takes relatively little time toexe
ute 
ompared to the burst pro
essing for a whole noodle. For the sampledataset tested on a single CS-2 node at VCPC, the initialisation phase takesabout 59 se
onds, 
ompared with about 2.5 se
onds per burst, but there areover 4000 bursts in the dataset, so the burst pro
essing time totally dominates.Thus, the fo
us of attention has been dire
ted at the main burst pro
essing loop,whi
h is lo
ated in the routine that performs the SAR 
orrelator pro
essing,pro
ess 
orr. The main work of the loop is done by 
alls to the routines shownin Fig. 2, whose parameters are omitted for brevity.
all 
orr_pp ! Fill pro
essing parameter (pp) 
ommon blo
k
all pp_keyvar ! Copy key pp values to 
orrelator 
ommon blo
kr_nbytes = 
read ! Read raw burst data
all de
ode_sar ! De
ompress raw intensity values
all range_
omp ! Perform range 
ompression
all 
orner_turn ! Perform a non-symmetri
 matrix transpose
all az_
omp ! Perform the Azimuth 
ompression
all radio_
omp ! Perform the radiometri
 
ompensation
all geo_re
t ! Perform a geometri
 re
tifi
ation
all multi_look ! Generate multi-look imageFig. 2. Routines in the main burst pro
essing loop in pro
ess 
orrThe �nal routine multi look is the only one that does not operate indepen-dently on ea
h burst, and is the one that writes the image to disk. The basi




strategy is to re-
ode this loop so that ea
h iteration 
an be exe
uted as a task ona separate pro
essor. In pra
ti
e, a pool of pro
essors, ea
h with 
ode to exe
utea single burst, would have burst data distributed to them by a master pro
ess.The resulting image data 
ould be 
olle
ted by the same master pro
ess, or byanother pro
ess, but for now let's assume that there is a single master 
ontroller.In order to be able to re-
ode the loop like this, it is ne
essary to understand itsdata dependen
es. In parti
ular it is ne
essary to identify:1. Variables whi
h are set before the loop, and read inside it, as this implies
ommuni
ation of initial values from the master to worker pro
esses.2. Variables whi
h are set inside the loop and read after it, whi
h implies 
om-muni
ation of values from the workers ba
k to the master.3. I/O, whi
h must be properly sequen
ed. File handles need spe
ial treatment,as you 
an't write to a handle opened on another pro
essor.4. Variables whose values are read within the loop, before later being updated,as their values depend on an assignment from the previous iteration, andimply 
ommuni
ation between worker pro
esses. This represents an anti-dependen
e from the �rst statement to the se
ond.Not only variables whi
h are lo
al to the subroutine 
ontaining the loop mustbe 
onsidered, but also any variables in 
ommon blo
ks that are used either bythe routine itself, or any other routines that it 
alls, dire
tly or indire
tly.Other work [5℄ has used a �ner-grained approa
h, parallelising the rangeand azimuth 
ompression 
ode, but for the Magellan SAR pro
essor that wouldgive a limited maximum possible speedup, due to the residual sequential 
ode.For example, it is estimated that if the range 
omp, 
orner turn and az 
omproutines were parallelised with 100% eÆ
ien
y, a maximum speedup of only 3.0
ould be obtained.The sour
e 
ode for the SAR pro
essor 
onsists of approximately 125 thou-sand lines of Fortran, divided among approximately 450 subroutines, togetherwith approximately 6500 lines of C, and although fo
using on the main burstpro
essing loop means that only around 5500 lines (plus in
luded 
ommon blo
kde
larations) need to be analysed in depth, this is still a substantial body of
ode, so manual analysis would be extremely laborious, and support from par-allelisation tools is highly desirable.5 Evaluation of Parallelisation Tools5.1 FORESYSFORESYS is a 
ommer
ial tool marketed by SIMULOG. It is a `Fortran engi-neering system', and has a range of features that help improve s
ienti�
 software.Initially version 1.4.1 was used, and later version 1.5 when it be
ame available.The features of the tool that were evaluated were 
ode browsing, program anal-ysis, and program restru
turing.



Code Browsing FORESYS has a graphi
al user interfa
e whi
h simpli�es
ode browsing, for example by being able to open a new window displaying thesour
e 
ode for a routine, simply by highlighting its name in another windowand sele
ting a menu option. Although 
on
eptually simple, this was found tobe quite useful in pra
ti
e.Program Analysis The feature of FORESYS that seemed potentially mostuseful for this work was its program analysis 
omponent, 
alled PARTITA, whi
hwas able to graphi
ally display dependen
es (Fig. 3). However, in pra
ti
e thedisplay be
ame 
luttered with information about types of dependen
e whi
hweren't relevant to the 
oarse-grained task parallelism that had been sele
tedfor the Magellan 
ode. There was also no obvious way to identify dependen
esbetween variable referen
es inside the main loop and those outside it.

Fig. 3. Program analysis with FORESYS
Program Restru
turing The tool was found to have an impressively robustfront end, whi
h was able to handle the non-standard Fortran extensions usedin this large 
ode, almost without 
omplaint. It was also able to transform theprogram into equivalent 
ode in standard Fortran 77 (it 
an also produ
e Fortran90, but that was not relevant in this 
ase). This rather straightforward soundingfeature turned out to be its most useful one in the 
ontext of this work, asneither IDA nor FORGExplorer 
ould have been used without it. Neither ofthem had a front end robust enough to handle the non-standard Fortran 
ode ofthe Magellan SAR pro
essor, whi
h had to be 
leaned up �rst using FORESYS.



5.2 IDAIDA (Inter-pro
edural Dependen
y Analyser), a publi
 domain tool availablefrom the University of Southampton and VCPC [4℄. It provides interpro
eduralinformation about Fortran programs, su
h as:1. Call graphs: the 
alling relationships between program units2. Tra
es of variables: where and how a variable is used throughout the program3. Common blo
k partitioning and usage: how 
ommon blo
ks are partitionedinto variables in ea
h program unit, and how those variables are used in thatunit and its des
endents4. Pro
edure referen
es and argument asso
iations: the lo
ation and a
tualarguments of every 
all to a parti
ular pro
edureIDA was designed for speed and simpli
ity of operation rather than sophis-ti
ation. It provides a text 
ommand interfa
e, not a graphi
al one, and it onlyperforms 
ode analysis, not 
ode transformation. However, it is simple to useand its analysis is fast, and its variable tra
e feature proved to be a useful start-ing point for investigating some of the dependen
es within the Magellan SAR
ode, whi
h were later investigated more fully using FORGExplorer. IDA a
tu-ally provides mu
h of the fun
tionality o�ered by FORGExplorer, but the lattertool's more sophisti
ated user interfa
e made it mu
h easier to use in pra
ti
e.5.3 FORGExplorerFORGExplorer is a 
ommer
ial tool marketed by Applied Parallel Resear
h.It has a Motif GUI, and presents a global, interpro
edural view of a program.It 
an perform sear
hes and variable tra
es, and features an intera
tive, inter-pro
edural Distributed Memory Parallelizer (DMP). Initially version 2.1 of thetool was used, and later version 2.2 when it be
ame available. The front end ofversion 2.1 did not a

ept all of the non-standard Fortran features in the 
ode,and so FORESYS was used to produ
e a 
leaned up version of the 
ode whi
hFORGExplorer 
ould pro
ess. The features of the tool that were evaluated were
ode browsing, the DMP option, and the global analysis views.Code browsing Similar fa
ilities to those of FORESYS are provided for 
odebrowsing, and they are similarly useful, though there are slightly more options.The Call Sub
hain display, whi
h represents the 
all graph as a list of routinenames, indented a

ording to their 
all level, was found to be parti
ularly useful.Distributed Memory Parallelizer The idea of an automati
 parallelizer wasobviously attra
tive, and so some time was invested in `pro�ling' the routinesthat were unknown to the tool, that is the ones for whi
h it does not have sour
e
ode, su
h as the C routines in the Magellan 
ode. The types of their argumentsmust be spe
i�ed, and whether they are read from or written to. Unfortunately,



having pro�led the unknown routines, it was dis
overed that the program wastoo 
omplex for FORGExplorer to handle, and it looped inde�nitely. It may havebeen possible to get further with the DMP using semi-automati
 parallelisationoptions, but it was de
ided to be less ambitious, and to investigate the manualinter-pro
edural analysis features of the basi
 FORGExplorer tool instead.Global Analysis Views Manual analysis of the 
ode using FORGExplorer'sglobal analysis views proved to be a mu
h more fruitful approa
h than the DMPoption, and in parti
ular the variable tra
ing and 
ommon blo
k usage displayswere found to be extremely helpful for identifying dependen
es. The variabletra
ing display (Fig. 4) lists all program lines where a variable is referen
ed,following the path that items passed through 
ommon or subprogram argumentstake, and the 
ommon blo
k usage display shows a grid of 
ommon blo
ks versussubprograms. At the interse
ting 
ells, the usage of the 
ommon blo
k by ea
hroutine is summarised, a

ording to whether variables are set and/or read.

Fig. 4. The FORGExplorer Tra
e window
6 Program Analysis and ParallelisationHaving evaluated the tools, FORGExplorer was the 
lear winner in terms of itsprogram analysis features, and so it was applied to the analysis of the MagellanSAR 
ode, to implement the parallelisation strategy.



6.1 Isolating the Slave Pro
ess CodeThe �rst step was to identify pre
isely whi
h 
ode from the burst loop (Fig. 2)would be run as a slave pro
ess, and to lo
alise it in a separate subroutine, givingit a 
lean interfa
e to the rest of the 
ode, ex
lusively through 
ommon blo
ks.It was de
ided to keep the 
read() statement in the master pro
ess, togetherwith the two routines 
alled before it, as that represented a parti
ularly 
leanbreak in the loop. The remaining routines in the loop were moved into a newsubroutine, 
alled pro
ess burst. The new routine inherited all of the 
ommonblo
k and lo
al data de
larations from pro
ess 
orr, and in addition, all of thelo
al variables were de
lared to be in a new 
ommon blo
k, so that values set inone routine 
ould be read by the other.6.2 Using FORGExplorer's `Referen
e Node'The next step was to restri
t the area of interest to the pro
ess burst routine,and routines 
alled by it, by setting FORGExplorer's `Referen
e Node' to it. The`Common Blo
ks' display shows that the whole program uses 415 routines, 91of whi
h referen
e data in 
ommon, spread over a total of 61 
ommon blo
ks.Setting the referen
e node to pro
ess burst redu
ed the area of interest to 15routines, referen
ing 14 
ommon blo
ks. Potentially that means 15 � 14 = 210
ommon blo
k referen
es, but FORGExplorer showed that in fa
t there wereonly 40, and so had su

eeded in redu
ing the size of the problem 
onsiderably.6.3 A Simpli�ed Parallelisation StrategyAlthough the 
omplexity of the program analysis had now been mu
h redu
ed,the dependen
ies within the multi look 
ode were still fairly 
omplex, and inorder to obtain an initial parallel version of the 
ode as qui
kly as possible,it was de
ided to �rst 
onstru
t a simpler parallel version of the 
ode thanoriginally planned, by moving the 
all to multi look() out of pro
ess burst,into its 
alling routine pro
ess 
orr. In this s
heme, the maximum amount ofparallelisation is limited by the sequential 
ode remaining in multi look, butthe analysis is signi�
antly simpli�ed, as just 8 routines need to be 
onsidered inpro
ess burst, and there are a total of just 14 referen
es to 8 
ommon blo
ks.6.4 Dependen
e AnalysisThe dependen
es between the master and slave pro
esses were then analysed,so that the 
ommuni
ations ne
essary between them in the parallelised 
ode
ould be determined. This was done using the 
ommon blo
k displays for bothpro
ess burst and pro
ess 
orr, together with the variable tra
ing display.The `Common Blo
ks' display allows a display of ea
h individual 
ommonblo
k to be opened, whi
h shows a table of variables in the 
ommon blo
k ver-sus the routines that a

ess them, and for ea
h variable referen
e it it indi
ated



whether it is read and/or set. Variables in the 
ommon blo
ks that were ref-eren
ed within pro
ess burst fell into three 
ategories, a

ording to whetherthey 
ontained variables that were:1. Read but not set within pro
ess burst2. Set within pro
ess burst and read afterwards in pro
ess 
orr3. Set and then read within pro
ess burst, but not used in pro
ess 
orrThose in the �rst 
ategory were the easiest to identify, sin
e it was enoughthat all their referen
es were reads, but for those in the other two 
ategories,it was ne
essary to 
he
k the read and write usage of the individual variablesin the 
ommon blo
ks, sin
e di�erent variables set in a 
ommon blo
k may ormay not be read later. This was done using the variable tra
ing display, whi
halso revealed a

esses to 
ommon blo
k variables that were passed to routinesas arguments, although the 
ommon blo
k was not de
lared in the routine, inwhi
h 
ase the referen
es were not indi
ated in the 
ommon blo
ks display. Thevariable tra
ing feature was also used to 
he
k for anti-dependen
es within theburst loop (a variable read followed by a set), but none were found. Fig. 5summarises the results of the dependen
e analysis, where the numbers in thegrid 
ells 
orrespond to the 
ategories of reading and writing de�ned above.ant weight az 
omp 
�t geo re
t init �t pro
ess burst radio 
omp range 
omp/bu�er/ 2,3/�t aux/ 3 3/key var/ 1 1 1 1 1,3 1/overlay 
12/ 2,3/p
 lo
/ 1/po a/ 1/s weight/ 1/test burst no/ 1Fig. 5. Results of dependen
e analysis - Common blo
ks vs. routinesThe 
ommuni
ation of variables between master and slave pro
esses 
an noweasily be dedu
ed. Variables in 
ategory 1 must be sent to the slave when itstarts to exe
ute, those in the 
ategory 2 must be sent ba
k to the master whenthe slave has �nished its pro
essing, and those in 
ategory 3 require no a
tion.6.5 ParallelisationAlthough the slave 
ode was isolated from the rest at an early stage in thework, the whole program was kept sequential for as long as possible, so that it
ould be 
ompiled and tested after ea
h modi�
ation, to make sure that it stillbehaved as before, and so that the global analysis features of FORGExplorer
ould 
ontinue to be used on the whole 
ode. Eventually, having performed thedependen
e analysis, the 
ode was split into two exe
utables, one for the slavepro
ess, 
ontaining the 
ode for the pro
ess burst routine, and one for the



master pro
ess 
ontaining the rest of the 
ode. Further analysis showed that thelarge arrays in the 
ommon blo
k /BUFFER/ 
ould be split between the masterand the slave, whi
h redu
ed the size of both exe
utables 
onsiderably, whi
h isimportant as they are 
lose to the limit of available memory on the CS-2. Theinsertion of the MPI 
ommuni
ation 
alls is 
urrently being performed.7 Con
lusionThe parallelisation strategy that has been adopted for the Magellan SAR pro-
essor is to re-
ode the burst pro
essing loop so that part of ea
h iteration 
anbe exe
uted as a task on a separate pro
essor. Due to the 
omplexity of the
ode, program analysis tools were needed to help implement this strategy. TheFORESYS, IDA and FORGExplorer tools were evaluated regarding their suit-ability for the task, and it was found that the most e�e
tive approa
h was to useFORGExplorer's variable tra
e and 
ommon blo
k usage fa
ilities, in 
onjun
-tion with FORESYS as a prepro
essor to 
lean up the 
ode. The data depen-den
es for a slightly simpli�ed parallelisation strategy were analysed, and workhas begun to implement the 
orresponding parallel program. FORGExplorer isa general tool, and the te
hniques that have been des
ribed are also appli
ableto the parallelisation of 
odes in other appli
ation areas.A
knowledgementsThis work has been supported by the Austrian Fonds zur F�orderung der Wis-sens
haftli
hen Fors
hung (FWF) through FSP proje
t S7001, \Theory and Ap-pli
ations of Digital Image Pro
essing and Pattern Re
ognition".The author wishes to thank S
ott Hensley for dis
ussions about the MagellanSAR 
ode, Ivan Wolton for advi
e on using FORGExplorer, and Rainer Kallianyand Alois Goller for mu
h help and advi
e.Referen
es1. Curlander, J. C., M
Donough, R. N.: Syntheti
 Aperture Radar: Systems and SignalPro
essing. Wiley Inters
ien
e (1991)2. JPL: The Magellan Venus Explorer's Guide. NASA; Jet Propulsion Laboratory,California Institute of Te
hnology, Pasadena, CA, JPL Publi
ation 90-24 (1990)3. Leberl, F., Mauri
e, K., Thomas, J., Kober, W.: Radargrammetri
 Measurementsfrom the Initial Magellan Coverage of Planet Venus. Photogrammetri
 Engineering& Remote Sensing, Vol. 57 No. 12 (1991) 1561-15704. Merlin, J. H., Reeve, J. S.: IDA - An aid to the parallelisation of Fortran 
odes.Te
hni
al report, Department of Ele
troni
s and Computer S
ien
e, University ofSouthampton (1995)5. Miller C., Payne, D. G., Phung, T. N., Siegel, H., Williams, R.: Parallel Pro
ess-ing of Spa
eborne Imaging Radar Data. Pro
eedings of Super
omputing '95, IEEEComputer So
iety Press, San Diego, CA (1995)6. Message Passing Interfa
e Forum: MPI: A message-passing interfa
e standard. In-ternational Journal of Super
omputer Appli
ations 8(3-4) (1994)


