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NVIDIA GPU Card Families 

 GeForce - gaming graphics processing products Nvidia is best known for

 Quadro - computer-aided design workstation graphics processing products

 Tesla – General Purpose GPU for high-end image generation applications
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GeForce

 GeForce 400 Series
– 11th generation of GeForce, introducing the Fermi architecture, with GF-

codenamed chips
– First cards were GeForce GTX 470 and GTX 480, released April 2010, 

based on the Fermi architecture, codenamed GF100, 448 & 480 cores
– Michael Rauter (AIT) uses a GTX 460, released July 2010, based on 

GF104 architecture, with 336 cores, lower power, better performance

 GeForce 500 Series
– First card was GTX 580, Nov. 2010, 512 cores, GF110 architecture
– Madrid have a GeForce GTX 570, which has 480 cores
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GeForce

 GeForce 600 Series
– Introducing the Kepler architecture, with GK-codenamed chips
– The series contains products with the older Fermi architecture
– First Kepler card was GeForce GTX 680, released March 2012, with a 

GK104 architecture and 1536 cores
– Madrid have a GTX 670, released May 2012, based on GK104 

architecture, with 1344 cores
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Quadro

 Essentially the same hardware at a premium price for professional markets

 Driver software and firmware to selectively enable features vital to segments 
of the workstation market, which prevent high-end customers from using the 
less expensive products

 A system used for gaming can shut down textures, shading, or rendering 
after only approximating a final output, but algorithms on a CAD-oriented 
card tend to complete all rendering operations, prioritising accuracy and 
rendering quality over speed

 Christoph Pacher has a Quadro FX 580, with 32 cores, G96 based on 
GeForce 9500 (9 series), and Ian Glendinning has a Quadro 2000M, with 
192 cores, GF106GLM, like GeForce GTS 450 
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Tesla

 Based on high-end GPUs from the GeForce 8 series upwards, as well as the 
Quadro family

 NVIDIA's first dedicated General-Purpose GPU

 The main difference between Tesla and GeForce/Quadro was the lack of 
ability to output images to a display, but the latest C-class products include a 
Dual-Link DVI port

 The main difference between Fermi-based Tesla cards and the GeForce 500 
series is the unlocked double precision performance, giving ½ of peak 
single-precision performance, compared with 1/8 of peak for GeForce cards

 Tesla cards also have ECC-protected memory and up to 6 GByte on-board 
memory
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NVIDIA GPU Architectures

 G80
– Introduced in the GeForce 8800 (8 series), Nov. 2006
– First GPU to support C
– First GPU to replace separate vertex and pixel pipelines by a single 

unified processor
– First GPU to use a scalar thread processor, eliminating the need for 

programmers to manually manage vector registers
– Introduced the single-instruction multiple-thread (SIMT) execution model
– Introduced shared memory and barrier synchronization for inter-thread 

communication

 GT200
– Introduced in the GeForce GTX 280, June 2008
– More cores, threads, added hardware memory-access coalescing and 

double precision floating point support
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NVIDIA GPU Architectures

 Fermi
– Up to 512 CUDA cores, each executing one floating point or integer 

instruction per clock
– Cores organized into streaming multiprocessors (SMs) with 32 cores
– Six 64-bit memory partitions for a 384-bit memory interface supporting 

up to 6 GB of GDDR5 DRAM memory
– A host interface connects the GPU to the CPU via PCI-Express
– The GigaThread global scheduler distributes thread blocks to SM thread 

schedulers 
– Introduced shared memory and barrier synchronization for inter-thread 

communication
– GF100's architecture is built from a number of hardware blocks called 

Graphics Processing Clusters (GPCs), containing a raster engine and up 
to four SMs

– Unified address space enables full C++ support 
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Fermi GF100 Architecture
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Fermi GF100 Streaming Multiprocessor
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Fermi Memory Hierarchy
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NVIDIA GPU Architectures

 Kepler
– Like Fermi, Kepler GPUs are composed of different configurations of 

Graphics Processing Clusters (GPCs), Streaming Multiprocessors (SMs) 
and memory controllers

– The GeForce GTX 680 GPU consists of four GPCs, eight next-
generation Streaming Multiprocessors (SMX) and four memory 
controllers

– Key features of the architecture are
• The new SMX processor architecture
• An enhanced memory subsystem, offering additional caching 

capabilities, more bandwidth at each level of the hierarchy, and a 
redesigned and faster DRAM I/O implementation

• Hardware support to enable new programming model capabilities
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Kepler Architecture (GeForce GTX 680)
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Kepler Architecture (GeForce GTX 680)
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Kepler Memory Hierarchy (GK110)
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CUDA & OpenCL

 CUDA
– Is the hardware and software architecture that enables NVIDIA GPUs to 

execute programs written in C, C++, Fortran, OpenCL, DirectCompute 
and other languages (Compute Unified Device Architecture)

– A CUDA program calls parallel kernels
– A kernel executes in parallel across a set of parallel threads
– The programmer or compiler organizes threads in thread blocks and 

grids of thread blocks
– Each thread within a thread block executes an instance of the kernel and 

has a thread ID
– A thread block is a set of threads that can cooperate through barrier 

synchronization and shared memory, and has a block ID within its grid
– A grid is an array of thread blocks that execute the same kernel, read 

inputs from global memory, write outputs to global memory, and 
synchronize between dependent kernel calls
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CUDA Thread Hierarchy and Memory Spaces
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Hardware Execution

 CUDA's hierarchy of threads maps to a hierarchy of processors on the GPU
– A GPU executes one or more kernel grids
– A streaming multiprocessor (SM) executes one or more thread blocks
– CUDA cores and other execution units in the SM execute threads
– The SM executes threads in blocks of 32 threads called a warp
– While programmers can generally ignore warp execution for functional 

correctness, they can greatly improve performance by having threads in 
a warp execute the same code path and access memory in nearby 
addresses
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Automatic Scalability

 Blocks of threads execute independently from each other, so that a GPU 
with more multiprocessors will automatically execute the program in less 
time than a GPU with fewer multiprocessors

 Only the runtime system needs to know the physical processor count
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OpenCL

 The CUDA architecture is a close match to the OpenCL architecture
– A CUDA Streaming Multiprocessor corresponds to an OpenCL compute 

unit
– A multiprocessor executes a thread for each OpenCL work item and a 

thread block for each OpenCL work group
– A kernel is executed over an OpenCL NDRange by a grid of thread 

blocks
– Each of the thread blocks that execute a kernel is uniquely identified by 

its work group ID and each thread by its global ID or by a combination of 
its local ID and its work group ID

 No OpenCL support in CUDA 5, must rely on CUDA 4.2 for now

 NVIDIA is developing OpenACC with Cray, PGI and others
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Parallel Implementation of LDPC Codes

 Implementation of Decoders for LDPC Block Codes and LDPC Convolutional 
Codes Based on GPUs, Yue Zhao and Francis C.M. Lau, July 2012
– Up to 100 to 200 times speedup on NVIDIA GTX 460 with 336 cores
– http://arxiv.org/abs/1204.0334

 High-Throughput GPU-Based LDPC Decoding, Yang-Lang Chang, Cheng-
Chun Chang, Min-Yu Huang and Bormin Huang, Proc. Of SPIE Vol. 7810, 
781008 (2010)
– Regular LDPC codes
– Achieved 271 times speedup on NVIDIA Tesla 1060 with 240 cores
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Parallel Implementation of LDPC Codes

 A Massively Parallel Implementation of QC-LDPC Decoder on GPU, Guohui 
Wang, Michael Wu, Yang Sun, and Joseph R. Cavallaro, 2011 IEEE 9th 
Symposium on Application Specific Processors (SASP)
– http://gpuscience.com/cs/a-massively-parallel-implementation-of-low-

density-parity-check-decoder-on-gpu/
– Quasi-Cyclic LDPC (QC-LDPC)
– LDPC decoder for IEEE 802.11n WiFi and 802.16e WiMAX LDPC codes 

as examples, irregular codes
– Achieve throughput of up to 100.3 Mbps on an NVIDIA GTX 470 with 

448 cores
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Details of IEEE 9th SASP Paper

 Mapping LDPC Decoding Algorithm to GPU Kernels
– Decoding can be split into two stages: horizontal processing & APP 

update (a posteriori probability)
– One computational kernel for each stage, running on the GPU, and host 

code performs initialization and memory copy between host and device
– CUDA Kernel 1: Horizontal Processing

• Since the Check-node to Variable-node (CTV) messages are 
calculated independently, many parallel threads can be used to 
process them

• For an M x N parity-check matrix H, M threads are spawned, and 
each thread processes a row

• H consists of M
sub

 x N
sub

 sub-matrices, and is generated by the 

expansion of a Z x Z base matrix 

• M
sub

 thread blocks are used, each with Z threads

• E.g. in 802.11g: 12 thread blocks each with 81 threads, 972 total
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Details of IEEE 9th SASP Paper

 Mapping LDPC Decoding Algorithm to GPU Kernels
– CUDA Kernel 2: APP value update

• There are N values to be updated, and the APP update is 
independent among the variable nodes

• N
sub

 thread blocks are used, each with Z threads

• Kernel 2 finally makes a hard decision for each bit, by quantizing the 
APP value into 1 and 0, to get the decoded bit

 Multi-codeword Parallel Decoding
– Since the number of threads and thread blocks are limited by the 

dimension of the H matrix, multi-codeword decoding is needed to further 
increase the parallelism of the workload

– A two-level multi-codeword scheme is used

– N
cw

 codewords are first packed into one macro-codeword (MCW)

– Each MCW is decoded by a thread block and N
mcw

 MCWs are decoded 

by a group of thread blocks
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Conclusions and Future Work

 LDPC codes can be efficiently implemented on NVIDIA GPUs

 Next steps:
– Analyse the code from Madrid
– Compare it with published work
– Implement new code
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