
HiPANQ
Overview of NVIDIA GPU Architecture and Introduction to 
CUDA/OpenCL Programming, and Parallelization of LDPC codes

Ian Glendinning



Outline

 NVIDIA GPU cards

 CUDA & OpenCL

 Parallel Implementation of LDPC codes

205.04.12



NVIDIA GPU Card Families 

 GeForce - gaming graphics processing products Nvidia is best known for

 Quadro - computer-aided design workstation graphics processing products

 Tesla – General Purpose GPU for high-end image generation applications

305.04.12



GeForce

 GeForce 400 Series
– 11th generation of GeForce, introducing the Fermi architecture, with GF-

codenamed chips
– First cards were GeForce GTX 470 and GTX 480, released April 2010, 

based on the Fermi architecture, codenamed GF100, 448 & 480 cores
– Michael Rauter (AIT) uses a GTX 460, released July 2010, based on 

GF104 architecture, with 336 cores, lower power, better performance

 GeForce 500 Series
– First card was GTX 580, Nov. 2010, 512 cores, GF110 architecture
– Madrid have a GeForce GTX 570, which has 480 cores

405.04.12



GeForce

 GeForce 600 Series
– Introducing the Kepler architecture, with GK-codenamed chips
– The series contains products with the older Fermi architecture
– First Kepler card was GeForce GTX 680, released March 2012, with a 

GK104 architecture and 1536 cores
– Madrid have a GTX 670, released May 2012, based on GK104 

architecture, with 1344 cores

505.04.12



Quadro

 Essentially the same hardware at a premium price for professional markets

 Driver software and firmware to selectively enable features vital to segments 
of the workstation market, which prevent high-end customers from using the 
less expensive products

 A system used for gaming can shut down textures, shading, or rendering 
after only approximating a final output, but algorithms on a CAD-oriented 
card tend to complete all rendering operations, prioritising accuracy and 
rendering quality over speed

 Christoph Pacher has a Quadro FX 580, with 32 cores, G96 based on 
GeForce 9500 (9 series), and Ian Glendinning has a Quadro 2000M, with 
192 cores, GF106GLM, like GeForce GTS 450 

605.04.12



Tesla

 Based on high-end GPUs from the GeForce 8 series upwards, as well as the 
Quadro family

 NVIDIA's first dedicated General-Purpose GPU

 The main difference between Tesla and GeForce/Quadro was the lack of 
ability to output images to a display, but the latest C-class products include a 
Dual-Link DVI port

 The main difference between Fermi-based Tesla cards and the GeForce 500 
series is the unlocked double precision performance, giving ½ of peak 
single-precision performance, compared with 1/8 of peak for GeForce cards

 Tesla cards also have ECC-protected memory and up to 6 GByte on-board 
memory

705.04.12



NVIDIA GPU Architectures

 G80
– Introduced in the GeForce 8800 (8 series), Nov. 2006
– First GPU to support C
– First GPU to replace separate vertex and pixel pipelines by a single 

unified processor
– First GPU to use a scalar thread processor, eliminating the need for 

programmers to manually manage vector registers
– Introduced the single-instruction multiple-thread (SIMT) execution model
– Introduced shared memory and barrier synchronization for inter-thread 

communication

 GT200
– Introduced in the GeForce GTX 280, June 2008
– More cores, threads, added hardware memory-access coalescing and 

double precision floating point support
805.04.12



NVIDIA GPU Architectures

 Fermi
– Up to 512 CUDA cores, each executing one floating point or integer 

instruction per clock
– Cores organized into streaming multiprocessors (SMs) with 32 cores
– Six 64-bit memory partitions for a 384-bit memory interface supporting 

up to 6 GB of GDDR5 DRAM memory
– A host interface connects the GPU to the CPU via PCI-Express
– The GigaThread global scheduler distributes thread blocks to SM thread 

schedulers 
– Introduced shared memory and barrier synchronization for inter-thread 

communication
– GF100's architecture is built from a number of hardware blocks called 

Graphics Processing Clusters (GPCs), containing a raster engine and up 
to four SMs

– Unified address space enables full C++ support 

905.04.12



Fermi GF100 Architecture

1005.04.12



Fermi GF100 Streaming Multiprocessor

1105.04.12



Fermi Memory Hierarchy

1205.04.12



NVIDIA GPU Architectures

 Kepler
– Like Fermi, Kepler GPUs are composed of different configurations of 

Graphics Processing Clusters (GPCs), Streaming Multiprocessors (SMs) 
and memory controllers

– The GeForce GTX 680 GPU consists of four GPCs, eight next-
generation Streaming Multiprocessors (SMX) and four memory 
controllers

– Key features of the architecture are
• The new SMX processor architecture
• An enhanced memory subsystem, offering additional caching 

capabilities, more bandwidth at each level of the hierarchy, and a 
redesigned and faster DRAM I/O implementation

• Hardware support to enable new programming model capabilities

1305.04.12



Kepler Architecture (GeForce GTX 680)

1405.04.12



Kepler Architecture (GeForce GTX 680)

1505.04.12



Kepler Memory Hierarchy (GK110)

1605.04.12



CUDA & OpenCL

 CUDA
– Is the hardware and software architecture that enables NVIDIA GPUs to 

execute programs written in C, C++, Fortran, OpenCL, DirectCompute 
and other languages (Compute Unified Device Architecture)

– A CUDA program calls parallel kernels
– A kernel executes in parallel across a set of parallel threads
– The programmer or compiler organizes threads in thread blocks and 

grids of thread blocks
– Each thread within a thread block executes an instance of the kernel and 

has a thread ID
– A thread block is a set of threads that can cooperate through barrier 

synchronization and shared memory, and has a block ID within its grid
– A grid is an array of thread blocks that execute the same kernel, read 

inputs from global memory, write outputs to global memory, and 
synchronize between dependent kernel calls

1705.04.12



CUDA Thread Hierarchy and Memory Spaces

1805.04.12



Hardware Execution

 CUDA's hierarchy of threads maps to a hierarchy of processors on the GPU
– A GPU executes one or more kernel grids
– A streaming multiprocessor (SM) executes one or more thread blocks
– CUDA cores and other execution units in the SM execute threads
– The SM executes threads in blocks of 32 threads called a warp
– While programmers can generally ignore warp execution for functional 

correctness, they can greatly improve performance by having threads in 
a warp execute the same code path and access memory in nearby 
addresses

1905.04.12



Automatic Scalability

 Blocks of threads execute independently from each other, so that a GPU 
with more multiprocessors will automatically execute the program in less 
time than a GPU with fewer multiprocessors

 Only the runtime system needs to know the physical processor count

2005.04.12



OpenCL

 The CUDA architecture is a close match to the OpenCL architecture
– A CUDA Streaming Multiprocessor corresponds to an OpenCL compute 

unit
– A multiprocessor executes a thread for each OpenCL work item and a 

thread block for each OpenCL work group
– A kernel is executed over an OpenCL NDRange by a grid of thread 

blocks
– Each of the thread blocks that execute a kernel is uniquely identified by 

its work group ID and each thread by its global ID or by a combination of 
its local ID and its work group ID

 No OpenCL support in CUDA 5, must rely on CUDA 4.2 for now

 NVIDIA is developing OpenACC with Cray, PGI and others

2105.04.12



Parallel Implementation of LDPC Codes

 Implementation of Decoders for LDPC Block Codes and LDPC Convolutional 
Codes Based on GPUs, Yue Zhao and Francis C.M. Lau, July 2012
– Up to 100 to 200 times speedup on NVIDIA GTX 460 with 336 cores
– http://arxiv.org/abs/1204.0334

 High-Throughput GPU-Based LDPC Decoding, Yang-Lang Chang, Cheng-
Chun Chang, Min-Yu Huang and Bormin Huang, Proc. Of SPIE Vol. 7810, 
781008 (2010)
– Regular LDPC codes
– Achieved 271 times speedup on NVIDIA Tesla 1060 with 240 cores

2205.04.12



Parallel Implementation of LDPC Codes

 A Massively Parallel Implementation of QC-LDPC Decoder on GPU, Guohui 
Wang, Michael Wu, Yang Sun, and Joseph R. Cavallaro, 2011 IEEE 9th 
Symposium on Application Specific Processors (SASP)
– http://gpuscience.com/cs/a-massively-parallel-implementation-of-low-

density-parity-check-decoder-on-gpu/
– Quasi-Cyclic LDPC (QC-LDPC)
– LDPC decoder for IEEE 802.11n WiFi and 802.16e WiMAX LDPC codes 

as examples, irregular codes
– Achieve throughput of up to 100.3 Mbps on an NVIDIA GTX 470 with 

448 cores

2305.04.12



Details of IEEE 9th SASP Paper

 Mapping LDPC Decoding Algorithm to GPU Kernels
– Decoding can be split into two stages: horizontal processing & APP 

update (a posteriori probability)
– One computational kernel for each stage, running on the GPU, and host 

code performs initialization and memory copy between host and device
– CUDA Kernel 1: Horizontal Processing

• Since the Check-node to Variable-node (CTV) messages are 
calculated independently, many parallel threads can be used to 
process them

• For an M x N parity-check matrix H, M threads are spawned, and 
each thread processes a row

• H consists of M
sub

 x N
sub

 sub-matrices, and is generated by the 

expansion of a Z x Z base matrix 

• M
sub

 thread blocks are used, each with Z threads

• E.g. in 802.11g: 12 thread blocks each with 81 threads, 972 total
2405.04.12



Details of IEEE 9th SASP Paper

 Mapping LDPC Decoding Algorithm to GPU Kernels
– CUDA Kernel 2: APP value update

• There are N values to be updated, and the APP update is 
independent among the variable nodes

• N
sub

 thread blocks are used, each with Z threads

• Kernel 2 finally makes a hard decision for each bit, by quantizing the 
APP value into 1 and 0, to get the decoded bit

 Multi-codeword Parallel Decoding
– Since the number of threads and thread blocks are limited by the 

dimension of the H matrix, multi-codeword decoding is needed to further 
increase the parallelism of the workload

– A two-level multi-codeword scheme is used

– N
cw

 codewords are first packed into one macro-codeword (MCW)

– Each MCW is decoded by a thread block and N
mcw

 MCWs are decoded 

by a group of thread blocks
2505.04.12



Conclusions and Future Work

 LDPC codes can be efficiently implemented on NVIDIA GPUs

 Next steps:
– Analyse the code from Madrid
– Compare it with published work
– Implement new code

 

2605.04.12



AIT Austrian Institute of Technology
your ingenious partner

Ian Glendinning

ian.glendinning.fl@ait.ac.at


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27

